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INTRODUCTION 

Modern components and materials in combination with 

recent pattern recognition methods for electromyographic 

(EMG) signals enable creating multi-functional arm 

prostheses with intelligent and user-friendly control [1]. 

While the usage of pattern recognition of features extracted 

from EMG signals has proven highly efficient in transradial 

prostheses [2,3], most current transhumeral prostheses 

utilize the amplitude of EMG signals from residual arm 

muscles to control open and close the hand. Co-contracting 

the muscles usually performs a switch to a different mode 

like flexion and extension of the elbow, which is 

cumbersome and does not allow simultaneous movements.  

In this paper we describe the systematic development 

process of an active myoelectric transhumeral prosthesis 

that allows opening, closing and rotating of the hand with 

simultaneous extension and flexion of the elbow joint.  

Numerous requirements concerning the motion- and 

security functions have to be considered during the system 

design process. Therefore we utilize the methodology of 

model-driven design of mechatronic systems and adapt it to 

the development of prosthetic systems. Mechatronic models 

describe both the physical- and the control-engineering 

model in one integrated model and enable us to design and 

optimize various aspects of a natural motion sequence from 

the early phases of the design up to the prototype phase. The 

result is a prosthesis prototype with an embedded Freescale 

-based controller. For movement recognition we rely on 

Support Vector Machines to classify surface EMG signals 

taken from residual humeral muscles. To validate our 

approach, a set of experiments was conducted by a 

transhumeral amputee.  

MODEL-BASED DESIGN APPROACH OF 

MECHATRONIC SYSTEMS 

The usage of an integrated development framework 

supporting the development process from the model to the 

prototype is crucial in modern active prosthesis 

development. Especially in the field of mechatronic 

application the integration of prototyping hardware into the 

design process is of great importance [4]. The usage of 

prototyping hardware simplifies the transition from the 

model to a prototype. It is common to subdivide the model-

based design process into three phases: the model-, test rig-, 

and prototype phase. 

In the model phase all system components can be 

designed and optimized using a virtual model before 

building a prototype. Different variants of components and 

functions can be tested by means of simulations. This phase 

allows the designers to develop the mechanical components 

in parallel with the actuators, sensor system and electronic 

functions. The phase results in models able to run under 

hard real time condition in the test rig phase. 

During the test rig phase the already built system 

components are analysed to determine if they fulfil the 

performance specifications. Model parameters of the 

components are identified on a test rig and the dynamic 

behaviour can be adjusted in the model if necessary. The 

entire system model will be stepwise adjusted by validated 

component parameters. 

In the prototyping phase the entire system will be 

analysed and tested. The main focus in this phase is on the 

examination of effects, which cannot be easily determined 

using the virtual model. These effects are for example 

abrasion or friction. Results of these phases form a 

knowledge base for further development. 

APPLICATION TO PROSTHESIS DESIGN 

Adapting the model-driven design paradigm to the 

requirements of prosthetic systems enables the developers to 

design and optimize all aspects of a natural motion sequence 

from the early phases of the design up to the prototype 

phase. 
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During the development process, mechatronic models 

are used which combine both the physical- as well as the 

control engineering models in one integrated model. This 

model-based approach leads to a considerable reduction of 

necessary tests. Furthermore, feedback and dynamic system 

behaviour can be considered in the early design stages. 

Modelling of prosthesis in CV (Modelling Phase) 

Figure 1 shows the function of the prosthesis in 

principal. It includes all features of a typical mechatronic 

system consisting of actuators, sensors, a mechanical 

structure and information processing. All these components 

have to be developed in an integrative manner. 

 

The mechanical structure of the prosthesis is modelled 

as a multi body system, which describes the most important 

parts of the dynamical behaviour. The information 

processing unit consists of the feature extraction module, the 

classifier, and the controller unit for the motion of the 

prosthesis. Feature extraction and classification are 

described in the following chapter. Figure 2 shows a 

simulation experiment of the prosthesis model with time 

plot and a 3d animation. 

Test Rig Phase 

The results of the model phase are used as a basis for 

the construction of the prosthesis. Data of mass, length, 

forces and torques enable the designer to test the 

components stepwise on a test rig. 

Testing of the controller design that was optimized 

during the model phase was done with the prototyping 

system CAMeL-View TestRig [5,6]. With this rapid 

prototyping system the components of the prosthesis were 

analysed and set in operation before the prototyping 

hardware was available. Figure 3 shows a test setup for the 

controller design. The reference data for the controller can 

be used from EMG measurement data collected in preceding 

experiments with test persons. 

 

The results of the test rig phase were considered in the 

model. Identified parameters like bearing friction were 

compared with model parameters and adjusted accordingly. 

Prototype Phase 

Fig. 4(c) shows the first prototype of the prosthesis. In 

the current state of development the system is in an 

intensive test phase.  

 

(a) (b) (c)

Figure 4: Front (a) and rear (b) view of experimental setup 

and prosthesis prototype (c) 

 
 

Figure 3: Prosthesis test rig setup 

 
 

Figure 2: Simulation experiment with 3d animation 

Figure 1: General function. EMG signals are acquired, amplified and digitalized.  Feature extraction and classification are 

implemented on the microcontroller. The motion controller instructs the drivers to perform a movement. 
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EMG DATA ACQUISITION, FEATURE 

EXTRACTION AND CLASSIFICATION 

We developed a feature extraction and classification 

scheme to simultaneously control hand/wrist and elbow 

movements. It is used in all three phases of the development 

process. 

EMG data acquisition 

For EMG data acquisition, we use a Nexus 16 analog 

digital converter to monitor eight EMG sensor channels 

with 24-bit resolution at a sampling rate of 1024 Hz. As 

electrodes we use standard ARBO Ag/AgCl ECG 

electrodes.  

 
We have placed the eight electrode pairs on the 

following arm muscles: M. deltoideus, M. biceps brachii, 

and M. triceps brachii. Additionally, a reference electrode 

was placed on the shoulder. The electrode placement 

scheme is presented in Fig. 5. The exact electrode positions 

are determined specifically for the test subject to obtain 

pronounced and reproducible signals. 

Feature extraction 

Based on the raw EMG signals djkp, where j denotes the 

time index, k the channel, and p the movement, we extract 

features in two steps following the approach presented in 

[8]. 

First, the steady state signal starting one second after 

the beginning of a movement is smoothed by a root mean 

square (RMS) method with a window size of ws = 10 

samples.  

The first 100 ms (102 samples at 1024 Hz) of the 

rectified and smoothed signal are thus given by: 

with j = 1...102. Then, a logarithm-transformed moving 

average with window size of wf = 20 samples and shift 

amount of sf = 10 samples is computed from d’jkp. A feature 

then comprises 10 values and is defined as: 

 

with lm = 1+(m-1)*sf, and m = 1...10. Two feature vectors 

are computed: feature vector 1 consisting of features 

extracted from channels 1 and 2 (20 values), and feature 

vector 2 consisting of features from channels 3-8 (60 

values). This is illustrated in Fig. 6(c).  

Movement classification 

For EMG signal classification we rely on support vector 

machines (SVMs) [7]. In our experiments we employ an 

exhaustive search on SVM’s parameters to identify good 

performing values for C and gamma. An extensive 

comparison of SVMs to other classifiers for EMG signal 

classification can be found in [8]. 

Two classifiers are created during the training phase of 

the system: SVM 1 from feature vector 1 and SVM 2 from 

feature vector 2. During the test phase, SVM 1 determines 

the elbow movement (flexion, extension, relax), while SVM 

2 simultaneously decides the hand/wrist movement (hand 

open/close, pronation, supination, relax). This is illustrated 

in Fig. 6(d) and (e). 

EXPERIMENTAL RESULTS 

In this section we report on experiments we have 

performed to evaluate the system’s movement classification 

performance. 

Experiments 

In a single experiment run, the test subject had to 

perform a sequence of six different movements. These 

movements are hand open and close, pronation and 

supination of the wrist and extension and flexion of the 

elbow. In total, 16 experiment runs have been conducted. 

Each movement starts with a relaxation part of about 4 

seconds followed by a contraction part that lasts about 5 

seconds, as shown in Fig. 6(a). 

 

 

 
Figure 5: Electrode placing on front (a) and rear (b) arm 

muscles: 1, 2. M. deltoideus, 3, 4, 5. M. biceps brachii, 6, 7, 

8 M. triceps brachii 
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The EMG signal for the contraction part divides into a 

one second phase at the onset of the contraction containing 

the transient components of the EMG signal, and a four 

seconds steady state phase, which corresponds to a constant 

force contraction. The steady phase has been used for 

classification. Features extracted from the 8 odd-numbered 

trials have been used as training data sets while features 

from the even-numbered trials were used as training data. 

Results 

We measure the classification performance of the 

trained SVM classifier by the classification accuracy, which 

is defined as:  

 

The classifiers SVM 1 and SVM 2 were used for offline 

classification of features extracted from the EMG signals. 

We used 100 ms feature extraction windows with an overlap 

of 50 ms, resulting in a new prediction every 50 ms. The 

classification decisions were used to control the virtual 

prosthesis and the test rig model. Table 1 shows the 

classification accuracies of the 6 movements. The average 

accuracy is 90,85%, further investigations will be made to 

determine whether this accuracy will be sufficient for a 

satisfying prosthesis operation.  

CONCLUSION 

In this paper, we have presented an approach to develop 

an EMG-based transhumeral prosthesis with multifunctional 

simultaneous control using a three-phased model-driven 

scheme for mechatronic systems. As a result, a first 

prototype of the prosthesis was built that allows opening 

and closing the hand, rotation of the wrist and simultaneous 

extension and flexion of the elbow joint. 
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Figure 6: EMG signal processing. Raw signal for all eight channels (a) and 100 ms of the steady state phase (b). Two 

feature vectors are extracted: one from channels 1 and 2, and one from channels 3-8 (c) and fed into two classifiers (d). 

Both classifiers determine hand/wrist and elbow movements simultaneously (e). 

Table 1: Movement classification accuracy 

classifier SVM 1 SVM 2 

movement ext flex open close pron sup 

accuracy (%) 96.1 95.3 88.0 90.7 87.1 87.9 
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